

UC SANTA BARBARA

Information and Influence: Overcoming and Exploiting Uncertainty in Congestion Games

Bryce L. Ferguson

In collaboration with Jason R. Marden and Philip N. Brown

For the ControlX series at the University of Washington

UNIVERSITY of WASHINGTON

Control in Large-Scale Systems

Traffic Network **Robot Fleet** Robot Fleet

Emergent problems: •

• Cannot *directly* control *every* component

• *Information* affects control capabilities

Information and Uncertainty in Control

Control in Large-Scale Systems

Traffic Network and Traffic Network Robot Fleet **Socio-Technical Systems Objectives:**

- Uncertainty Informed Communicated Later Later and Archives in fluid media ntify effective influencing me **• Identify effective influencing mechanisms** ➢ **Non-invasive**
	- Power Grid **Company 10 Constant Allocation Defense Allocation** Constants and Tennis Power Grid Constants and Defense Allocation Constants and Defense Allege Allege Allege Allege Allege Allege Allege Allege Allege Allege

1. Monetary Incentives

Q?:

- 1. How to *design* with *uncertainty*?
- 2. How *information* affects *performance?*
- **A:**
- 1. *Robust* incentives
- 2. Performance guarantees

2. Information Signalling

Q?:

- 1. Is signalling effective?
- 2. How to design *signalling policy*?
- **A:**
- 1. Has the potential to *help* or *hurt*
- 2. Methods to solve for optimal signal

3. Incentive-Signal Co-design

Q?:

- 1. *Benefit* to designing *concurrently*?
- 2. How to *co-design* mechanisms?
- **A:**
- 1. Incentives *robustify* signalling
- 2. Methods to solve co-design

- 1. Users with *individual decision making*
- 2. Actions aligned with *relevant system behavior*
- 3. Users' *decisions affect* the system and *each other*

Routing Problem

- Graph (V, E)
- Origin-destination pairs (o_i, t_i)
	- Mass of traffic r_i
- User $x \in [0, r_i]$ selects a path $P_x \in \mathcal{P}_i$
- Flow $f = \{f_e\}_{e \in E}$
- Latency functions $\ell_e(f_e)$
	- Non-decreasing, cont. diff.

• Cost minimizing users

$$
P_x \in \underset{P \in \mathcal{P}_i}{\arg \min} J_x(P; f^{\text{Nf}}) \neq \sum_{e \in P \in P} \ell_e(\ell_e(f^{\text{Nf}}_e) \,\forall x \in N)
$$

Nash/user/Wardrop flow f^{Nf}

Emerge from many natural learning dynamics and essentially unique

Are these good states to be at?

System Performance

System Cost = Social Welfare

Total Latency

 $\mathcal{L}(f) = \sum_{e \in E} f_e \ell_e(f_e)$

aggregate/average user travel time

Optimal Flow

$$
f^{\text{opt}} \in \underset{f \text{ is feasible}}{\text{arg min}} \mathcal{L}(f)
$$

Compare selfish to optimal

Measure for inefficiency of selfish routing

Understand influencing mechanisms' abilities to reduce inefficiency

Incentive Mechanisms

Example

 $\ell_1(f_1) = f_1 + f_1(f_1)$ $\ell_2(f_2) = 1 + \theta_2(f_2)$

How does *uncertainty* affect our **Price of Anarchy:** ability to incentivize?

Total Latency $\mathcal{L}(f) = \sum f_e \ell_e(f_e)$ $_{\rm edges}$ Optimal Flow
 $\frac{3}{2}$ $\mathcal{L}(f^{\text{opt}})$

Selfish Routing: Nash Flow $\mathcal{L}(f^{\rm Nf})$

$$
\frac{\mathcal{L}(f^{\rm Nf})}{\mathcal{L}(f^{\rm opt})}=\frac{4}{3}
$$

Uncertain User Response

We can *not* perfectly predict how users respond to incentives

Each user has unknown price-sensitivity $s_x \in [S_L, S_U]$

$$
J_x(P_x, f) = \sum_{e \in P_x} \ell_e(f_e) + s_x \tau_e(f_e)
$$

Value of time
vs money

Population sensitivity distribution

 $s \in \mathcal{S} = \{s : N \to [S_{\rm L}, S_{\rm U}]\}\$

Example

 $\ell_1(f_1) = f_1 + \frac{1}{2} \Re f_1(f_1)$ $\ell_2(f_2) = 1 + \frac{1}{2} \mathcal{D}(\mathcal{D}(\mathcal{Y}_2))$

Highly sensitive users: $s_x = 10 \; \forall x \in N$

How do we design incentives with \parallel Price of Anarchy: *uncertainty* about *price sensitivities*?

Total Latency $\mathcal{L}(f) = \sum f_e \ell_e(f_e)$ $_{\rm edges}$ Optimal Flow $\mathcal{L}(f^{\text{opt}})$

Selfish Routing: Nash Flow
 $\mathcal{L}(f^{\rm Nf}) = \frac{3}{4}91$

$$
\frac{\mathcal{L}(f^{\rm Nf})}{\mathcal{L}(f^{\rm opt})} \approx 1.213
$$

Uncertain User Response

We can *not* perfectly predict how users respond to incentives

Each user has unknown price-sensitivity $s_x \in [S_L, S_U]$

$$
J_x(P_x, f) = \sum_{e \in P_x} \ell_e(f_e) + s_x \tau_e(f_e)
$$

Value of time
vs money

Population sensitivity distribution

 $s \in \mathcal{S} = \{s : N \to [S_L, S_U]\}\$

Worst case: No information (Knightian uncertainty)

 $T^{\text{opt}} \in \arg \min \text{PoA}(G, \mathcal{S}, T) = \sup \text{PoA}(G, s, T)$

Objective: Robust incentive design

Full info. [Fleischer, et. al.] [Cole, et. al.]

• Optimal incentives with heterogeneous price sensitive users

No info. [Brown, et. al.]

- Optimal tolls with heterogeneous price sensitive users and price of anarchy bound
	- Restricted incentives in limited setting

Today:

- Value of information
- Budget constraints
- Different incentive types

Subsidies and Tolls

Though we could use both… Consider separately to determine important qualities of each

Tolling function:

 $\tau_e^+(f_e) \geq 0 \quad \forall f_e \geq 0$

Tolling mechanism:

$$
T^+(e;G) = \tau_e^+
$$
 Only assigns tolls

Optimal tolling mechanism:

 $T^{\text{opt+}} \in \arg \min \text{PoA}(G, T^+)$ T^+

Subsidy function:

$$
\tau_e^-(f_e) \le 0 \quad \forall f_e \ge 0
$$

Subsidy mechanism:

 $T^-(e;G) = \tau_e^-$ Only assigns subsidies

Optimal subsidy mechanism:
 $T^{\text{opt}-} \in \arg \min \text{PoA}(G, T^-)$ T^-

Budgetary Constraints

 $|\tau_e(f_e)| \leq \beta \ell_e(f_e) \quad \forall f_e \geq 0$ Added Constraint:

Incentive function

Full info/homogeneous (i.e., $S_L = S_U = 1$)

Theorem 1.1 [ACC20,LCSS,TAC] *For a family of congestion games* G *, under bounding factor* $\beta > 0$,

 $PoA(G, T^{opt+}(\beta))$ \geq PoA $(G, T^{\text{opt} -}(\beta)) \geq 1$

Additionally, if the budget constraint is active for every optimal incentive, the inequalities are strict.

Smaller subsidies can outperform *larger tolls*.

Budgetary Constraints & User Heterogeneity

Start with *nominally equivalent* bounded subsidies and tolls, i.e., What happens when we introduce uncertainty into the problem? No info/heterogeneous (i.e., $s_x \in [S_L, S_U]$)

 $PoA(\mathcal{G}, T^{opt+}(\beta^+)) = PoA(\mathcal{G}, T^{opt-}(\beta^-))$ when users are homogeneous.

Performance of *subsidies is less robust* to player heterogeneity than tolls.

As user become heterogeneous:

Theorem 1.2 [ACC20,LCSS,TAC]

For a congestion game G, under bounding factors β^+, β^- respectively, with possible price-sensitivity distributions S.

 $PoA(G, S, T^{opt-}(\beta^-, S))$ \geq PoA $(G, \mathcal{S}, T^{\text{opt+}}(\beta^+, \mathcal{S})) \geq 1$.

Additionally, if G is responsive to user heterogeneity, *the inequalities are strict.*

Effect of Uncertainty

Other Contributions

- Further uncertainty over network structure/latency functions
- Partial information
	- How do pieces of information help improve performance? [CDC19,TCSS*]
- Fairness vs performance
	- How does improving performance affect fairness? [ACC21]
- Unincentivizable users
	- What if some users do not receive incentives? [CDC21]

Users' Uncertainty

Uncertainty for system **apers**tor

Can users' *uncertainty* be *exploited*?

Information Signalling

Revealing full info can *hurt* system performance

How do we signal intelligently?

Bayesian Congestion Game

Efficacy of Signalling

Given signal $\pi : A \to \Delta(M)$ and prior μ_0

Bayesian-Nash flow $\mathbf{f}^{\text{BNf}} = \{f(m)\}_{m \in M}$

agents pick an edge based on received signal

Expected User Cost
 $J_x(P_x; f(m)) = \mathbb{E}\left[\sum_{e \in P} \ell_e(f_e(m)) \mid m\right]$

System Cost: *Expected* Total Latency in a BNf $\mathcal{L}^{\text{BNf}}(\pi;\mu_0) = \mathbb{E}\left[\mathcal{L}(\alpha, f(m))\right]$

Reduction in system cost from signalling

Can signalling *help*? Can signalling *hurt*?

Proposition 2.1: There exists a signalling policy π in a Bayesian-congestion game G with prior μ_0 over the latency coefficient parameter α that has arbitrarily negative benefit, i.e.,

$$
\inf_{\mu_0,\pi,G} \mathbf{B}(\pi;\mu_0) = -\infty.
$$

Recall:

$$
\mathbf{B}(\pi;\mu_0) < 0 \quad \Rightarrow \quad \mathcal{L}^{\mathrm{BNf}}(\pi;\mu_0) > \mathcal{L}^{\mathrm{BNf}}(\emptyset;\mu_0)
$$

Note: Worst example comes from revealing full information

Illustrative example

Benefit of Signalling

How much can signalling *help*?

Restrict to parallel networks and polynomial latency functions

i.e.,
$$
\ell_e(f_e) = \sum_{d \in \mathcal{D}} \alpha_{e,d}(f_e)^d \qquad \mathcal{D} = \{d_1, \dots, d_{|\mathcal{D}|}\}, \ d_i \in \mathbb{N}
$$

Theorem 2.2: For any set of polynomial degrees \mathcal{D} , prior μ_0 , and signalling policy π :

$$
-\sqrt{|\mathcal{D}|} \cdot \|\mathbb{E}[\alpha] - \underline{\alpha}\|_2 \le \mathbf{B}(\pi; \mu_0) \le \sqrt{|\mathcal{D}|} \cdot \|\mathbb{E}[\alpha] - \underline{\alpha}\|_2,
$$

where $\mathbb{E}[\alpha] = \int_{x \in A} x \cdot \mu_0(x) dx$, and $\underline{\alpha} \in \mathbb{R}_{\geq 0}^{|E| \cdot |\mathcal{D}|}$ such that $\underline{\alpha}_{e,d} = \inf \{ \text{supp}(\alpha_{e,d}) \}$ for each $e \in E, d \in \mathcal{D}$.

Observations:

- 1. Signals can help *or* hurt performance
- 2. Bounds depend on
	- I. Complexity of model
	- II. Spread of α

Proof Sketch

Insights on Signalling

- Signalling can have negative consequences
	- Negative benefit
- Identified good/bad situations to use signalling
	- Concavity/convexity
- Bound how effective signalling can be
	- In the context of parallel-network, polynomial-latency Bayesian congestion games

Can we do anything to *ensure* signalling *helps*?

Signalling & Incentives

Can *co-designing* mechanisms improve performance?

Signal-aware incentive mechanism

 $T(m) = {\tau_e(m)}_{e \in E}$

Signal-Aware Incentive Design

Proposition 3.1: For a signalling policy π , the optimal signal aware incentive T^* assigns incentives $\tau_e^{\star}(m) = \sum \mathbb{E}[\alpha_{e,d}|m] \cdot z_e \cdot \ell'_d(z_e)$ $d\in \mathcal{D}$ where $z \in \arg\min_{f} \mathcal{L}(f; \mathbb{E}[\alpha | \pi_i]).$

Signalling with Concurrent Incentives

Can signalling *help*? Can signalling *hurt*?

Theorem 3.2: While using the signal-aware incentive policy T^* , any signalling policy $\pi: A \to \Delta(M)$ has non-negative benefit to system cost, i.e.,

 $\mathbf{B}(\pi;\mu_0,T^{\star})\geq 0 \quad \forall G,\mu_0,\pi.$

Recall:

$$
\mathbf{B}(\pi;\mu_0) \ge 0 \quad \Rightarrow \quad \mathcal{L}^{\mathrm{BNf}}(\pi;\mu_0) \le \mathcal{L}^{\mathrm{BNf}}(\emptyset;\mu_0)
$$

Signalling can never be bad when we use incentives

Proof Sketch

Benefit of Signalling with Incentives

How much can signalling *help*?

Restrict to parallel networks and polynomial latency functions

i.e.,
$$
\ell_e(f_e) = \sum_{d \in \mathcal{D}} \alpha_{e,d}(f_e)^d \qquad \mathcal{D} = \{d_1, \dots, d_{|\mathcal{D}|}\}, \ d_i \in \mathbb{N}
$$

Theorem 3.3: For any set of polynomial degrees \mathcal{D} , prior μ_0 , and signalling policy π : $\label{eq:4.1} \begin{split} 0\leq\mathbf{B}(\pi;\mu_{0},T^{\star})\leq\sqrt{|\mathcal{D}|}\cdot\|\mathbb{E}[\alpha]-\underline{\alpha}\|_{2},\\ \text{where }\mathbb{E}[\alpha]=\int_{x\in A}x\cdot\mu_{0}(x)dx\text{, and }\underline{\alpha}\in\mathbb{R}_{\geq0}^{|E|\cdot|\mathcal{D}|}\text{ such that }\underline{\alpha}_{e,d}=\inf\{\text{supp}(\alpha_{e,d})\} \end{split}$ for each $e \in E, d \in \mathcal{D}$.

Observations:

- 1. With incentives, signalling *can only help*
- 2. Signalling still has the same capabilities to improve performance

Insights on Signalling with Incentives

- Incentives make signalling robust
	- No negative benefit
- Signalling maintains similar improvement capabilities

Optimal Signals without Incentives

Parallel networks and polynomial latency Finite support i.e., $\ell_e(f_e) = \sum \alpha_{e,d}(f_e)^d$ $A = \{ \alpha^1, \ldots, \alpha^{|A|} \}$

Decision variables: $\pi \in \mathbb{R}^{|A| \times |A|}$ where $\pi(m, k) = \mathbb{P}[m] \alpha^k$ $\mathbf{f} \in \mathbb{R}^{|E| \times |A|}$ where $\mathbf{f}(e,m) =$ flow on edge e with signal m

 $\underset{\mathbf{f}\in\mathbb{R}_{>0}^{|E|\times|A|},\ \pi\in\mathbb{R}_{>0}^{|A|\times|A|}}{\text{O}}\quad \mathcal{L}(\mathbf{f};\mu_0,\pi)=\sum\sum\sum\sum\alpha_{e,d}^k(\mathbf{f}(e,m))^{d+1}\cdot \pi(m,k)\mu_0(k)$ s.t. Eq. constraint **Polyh**omial objective/ constraints $1\!\!1_{|A|}^T \pi = 1\!\!1_{|A|}^T$ Cast as GMP \longrightarrow Approx. sol. w/ SDP [Zhu, et. al.]

Optimal Signals with Incentives

Parallel networks and polynomial latency i.e., $\ell_e(f_e) = \sum \alpha_{e,d}(f_e)^d$ $d \in \mathcal{D}$

Finite support $A = \{\alpha^1, \ldots, \alpha^{|A|}\}\$

Decision variables: $\pi \in \mathbb{R}^{|A| \times |A|}$ where $\pi(m, k) = \mathbb{P}[\alpha^k | m]$

 $\mathbf{f} \in \mathbb{R}^{|E| \times |A|}$ where $\mathbf{f}(e,m) =$ flow on edge e with signal m

Flow optimal at each signal
\n
$$
\min_{\mathbf{f} \in \mathbb{R}_{\geq 0}^{|E| \times |A|}, \pi \in \mathbb{R}_{\geq 0}^{|A| \times |A|}} \mathcal{L}(\mathbf{f}; \mu_0, \pi(\mathbf{T})) = \sum_{k=1}^{|A|} \sum_{m=1}^{|A|} \sum_{e \in E} \sum_{d \in \mathcal{D}} \alpha_{e,d}^k(\mathbf{f}(e, m))^{d+1} \cdot \pi(m, k) \mu_0(k)
$$
\ns.t.\n
$$
\frac{\mathbf{f}(e, m) \cdot \sum_{k=1}^{|A|} (\ell^k(\mathbf{f}(e, m)) - \ell^k(\mathbf{f}(e', m))) \pi(m, k) \mu_0(k) \leq 0}{\mathbf{f}(e, m) \cdot \sum_{k=1}^{|A|} (\ell^k(\mathbf{f}(e, m)) - \ell^k(\mathbf{f}(e', m))) \pi(m, k) \mu_0(k) \leq 0}{\forall e, e' \in E, \ m \in M} \text{objective/\n
$$
\mathbf{1}_{|A|}^T \pi = \mathbf{1}_{|A|}^T
$$
\n
$$
\text{Cast as Geo. program} \longrightarrow \text{Solve as convex problem}
$$
$$

Numerical Result

Insights:

- Optimal design helps
- Co-design gives best performance
- Revealing truth is good with incentives

Summarizing Remarks

- *Information* is valuable in incentive design
	- Subsidies and tolls
- Signalling information can be *helpful* or *hurtful*
- Signal/incentive co-design makes signalling *robust*
	- and leads to best performance

Future Direction

• Signalling in Other Domains

• Non-Bayesian Receivers

UC SANTA BARBARA

Information and Influence: Overcoming and Exploiting Uncertainty in Congestion Games

Bryce L. Ferguson

In collaboration with Jason R. Marden and Philip N. Brown

Supported by: NSF, ONR, AFOSR

